EXERCISE - 2.1

Question 1:

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y.
It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$.
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$.
$\frac{x}{3}+1=\frac{5}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3} \quad \Rightarrow y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow x=2 \quad \Rightarrow y=1$
$\therefore x=2$ and $y=1$

Question 2:

If the set A has 3 elements and the set $B=\{3,4,5\}$, then find the number of elements in $(\mathrm{A} \times \mathrm{B})$?

It is given that set A has 3 elements and the elements of set B are 3,4 , and 5 .
\Rightarrow Number of elements in set $\mathrm{B}=3$

Number of elements in $(\mathrm{A} \times \mathrm{B})$
$=($ Number of elements in A$) \times($ Number of elements in $B)$
$=3 \times 3=9$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Thus, the number of elements in $(\mathrm{A} \times \mathrm{B})$ is 9 .

Question 3:

If $\mathrm{G}=\{7,8\}$ and $\mathrm{H}=\{5,4,2\}$, find $\mathrm{G} \times \mathrm{H}$ and $\mathrm{H} \times \mathrm{G}$.
$\mathrm{G}=\{7,8\}$ and $\mathrm{H}=\{5,4,2\}$
We know that the Cartesian product $\mathrm{P} \times \mathrm{Q}$ of two non-empty sets P and Q is defined as
$\mathrm{P} \times \mathrm{Q}=\{(p, q): p \in \mathrm{P}, q \in \mathrm{Q}\}$
$\therefore \mathrm{G} \times \mathrm{H}=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$\mathrm{H} \times \mathrm{G}=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.
(i) If $\mathrm{P}=\{m, n\}$ and $\mathrm{Q}=\{n, m\}$, then $\mathrm{P} \times \mathrm{Q}=\{(m, n),(n, m)\}$.
(ii) If A and B are non-empty sets, then $\mathrm{A} \times \mathrm{B}$ is a non-empty set of ordered pairs (x, y) such that $x \in \mathrm{~A}$ and $y \in \mathrm{~B}$.
(iii) If $\mathrm{A}=\{1,2\}, \mathrm{B}=\{3,4\}$, then $\mathrm{A} \times(\mathrm{B} \cap \Phi)=\Phi$.
(i) False

If $\mathrm{P}=\{m, n\}$ and $\mathrm{Q}=\{n, m\}$, then
$\mathrm{P} \times \mathrm{Q}=\{(m, m),(m, n),(n, m),(n, n)\}$
(ii) True
(iii) True

Question 5:

EDUCATION CENTRE
 Where You Get Complete Knowledge

If $\mathrm{A}=\{-1,1\}$, find $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$.

It is known that for any non-empty set $\mathrm{A}, \mathrm{A} \times \mathrm{A} \times \mathrm{A}$ is defined as
$\mathrm{A} \times \mathrm{A} \times \mathrm{A}=\{(a, b, c): a, b, c \in \mathrm{~A}\}$
It is given that $A=\{-1,1\}$
$\therefore \mathrm{A} \times \mathrm{A} \times \mathrm{A}=\{(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1)$,
$(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\}$

Question 6:

If $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$. Find A and B.
It is given that $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$
We know that the Cartesian product of two non-empty sets P and Q is defined as $\mathrm{P} \times \mathrm{Q}=$ $\{(p, q): p \in \mathrm{P}, q \in \mathrm{Q}\}$
$\therefore \mathrm{A}$ is the set of all first elements and B is the set of all second elements.
Thus, $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{x, y\}$
Question 7:
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$. Verify that
(i) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
(ii) $\mathrm{A} \times \mathrm{C}$ is a subset of $\mathrm{B} \times \mathrm{D}$
(i) To verify: $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$

We have $\mathrm{B} \cap \mathrm{C}=\{1,2,3,4\} \cap\{5,6\}=\Phi$
\therefore L.H.S. $=\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=\mathrm{A} \times \Phi=\Phi$
$\mathrm{A} \times \mathrm{B}=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$

EDUCATION CENTRE
 Where You Get Complete Knowledge

$\mathrm{A} \times \mathrm{C}=\{(1,5),(1,6),(2,5),(2,6)\}$
\therefore R.H.S. $=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})=\Phi$
\therefore L.H.S. $=$ R.H.S

Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) To verify: $\mathrm{A} \times \mathrm{C}$ is a subset of $\mathrm{B} \times \mathrm{D}$
$\mathrm{A} \times \mathrm{C}=\{(1,5),(1,6),(2,5),(2,6)\}$
$\mathrm{B} \times \mathrm{D}=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8)$, $(4,5),(4,6),(4,7),(4,8)\}$

We can observe that all the elements of $\operatorname{set} \mathrm{A} \times \mathrm{C}$ are the elements of set $\mathrm{B} \times \mathrm{D}$.

Therefore, $\mathrm{A} \times \mathrm{C}$ is a subset of $\mathrm{B} \times \mathrm{D}$.

Question 8:

Let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$. Write $\mathrm{A} \times \mathrm{B}$. How many subsets will $\mathrm{A} \times \mathrm{B}$ have? List them.
$\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$
$\therefore \mathrm{A} \times \mathrm{B}=\{(1,3),(1,4),(2,3),(2,4)\}$
$\Rightarrow n(\mathrm{~A} \times \mathrm{B})=4$

We know that if C is a set with $n(\mathrm{C})=m$, then $n[\mathrm{P}(\mathrm{C})]=2^{m}$.
Therefore, the set $\mathrm{A} \times \mathrm{B}$ has $2^{4}=16$ subsets. These are
$\Phi,\{(1,3)\},\{(1,4)\},\{(2,3)\},\{(2,4)\},\{(1,3),(1,4)\},\{(1,3),(2,3)\}$,
$\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\}$,
$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\}$,

```
\(\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}\)
```


Question 9:

Let A and B be two sets such that $n(\mathrm{~A})=3$ and $n(\mathrm{~B})=2$. If $(x, 1),(y, 2),(z, 1)$ are in $\mathrm{A} \times$ B , find A and B , where x, y and z are distinct elements.

It is given that $n(\mathrm{~A})=3$ and $n(\mathrm{~B})=2$; and $(x, 1),(y, 2),(z, 1)$ are in $\mathrm{A} \times \mathrm{B}$.
We know that $\mathrm{A}=$ Set of first elements of the ordered pair elements of $\mathrm{A} \times \mathrm{B}$
$B=$ Set of second elements of the ordered pair elements of $A \times B$.
$\therefore x, y$, and z are the elements of A ; and 1 and 2 are the elements of B .
Since $n(\mathrm{~A})=3$ and $n(\mathrm{~B})=2$, it is clear that $\mathrm{A}=\{x, y, z\}$ and $\mathrm{B}=\{1,2\}$.

Question 10:

The Cartesian product $\mathrm{A} \times \mathrm{A}$ has 9 elements among which are found $(-1,0)$ and $(0,1)$. Find the set A and the remaining elements of $\mathrm{A} \times \mathrm{A}$.

We know that if $n(\mathrm{~A})=p$ and $n(\mathrm{~B})=q$, then $n(\mathrm{~A} \times \mathrm{B})=p q$.
$\therefore n(\mathrm{~A} \times \mathrm{A})=n(\mathrm{~A}) \times n(\mathrm{~A})$
It is given that $n(\mathrm{~A} \times \mathrm{A})=9$
$\therefore n(\mathrm{~A}) \times n(\mathrm{~A})=9$
$\Rightarrow n(\mathrm{~A})=3$
The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $\mathrm{A} \times \mathrm{A}$.
We know that $\mathrm{A} \times \mathrm{A}=\{(a, a): a \in \mathrm{~A}\}$. Therefore, $-1,0$, and 1 are elements of A .
Since $n(\mathrm{~A})=3$, it is clear that $\mathrm{A}=\{-1,0,1\}$.
The remaining elements of set $\mathrm{A} \times \mathrm{A}$ are $(-1,-1),(-1,1),(0,-1),(0,0)$,
$(1,-1),(1,0)$, and $(1,1)$

EXERCISE -2.2

Question 1:

Let $\mathrm{A}=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$. Write down its domain, codomain and range.

The relation R from A to A is given as
$\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$
i.e., $\mathrm{R}=\{(x, y): 3 x=y$, where $x, y \in \mathrm{~A}\}$
$\therefore \mathrm{R}=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $\mathrm{R}=\{1,2,3,4\}$
The whole set A is the codomainof the relation R.
\therefore Codomain of $\mathrm{R}=\mathrm{A}=\{1,2,3, \ldots, 14\}$
The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $\mathrm{R}=\{3,6,9,12\}$

Question 2:

Define a relation R on the set \mathbf{N} of natural numbers by $\mathrm{R}=\{(x, y): y=x+5, x$ is a natural number less than $4 ; x, y \in \mathbf{N}\}$. Depict this relationship using roster form. Write down the domain and the range.
$\mathrm{R}=\{(x, y): y=x+5, x$ is a natural number less than $4, x, y \in \mathbf{N}\}$
The natural numbers less than 4 are 1, 2, and 3 .
$\therefore \mathrm{R}=\{(1,6),(2,7),(3,8)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $\mathrm{R}=\{1,2,3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $\mathrm{R}=\{6,7,8\}$

Question 3:

$\mathrm{A}=\{1,2,3,5\}$ and $\mathrm{B}=\{4,6,9\}$. Define a relation R from A to B by $\mathrm{R}=\{(x, y)$: the difference between x and y is odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$. Write R in roster form.
$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$\mathrm{R}=\{(x, y)$: the difference between x and y is odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$
$\therefore \mathrm{R}=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q . write this relation
(i) in set-builder form (ii) in roster form.

What is its domain and range?

According to the given figure, $P=\{5,6,7\}, \mathrm{Q}=\{3,4,5\}$
(i) $\mathrm{R}=\{(x, y): y=x-2 ; x \in \mathrm{P}\}$ or $\mathrm{R}=\{(x, y): y=x-2$ for $x=5,6,7\}$
(ii) $\mathrm{R}=\{(5,3),(6,4),(7,5)\}$

Domain of $\mathrm{R}=\{5,6,7\}$

Range of $\mathrm{R}=\{3,4,5\}$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Question 5:

Let $\mathrm{A}=\{1,2,3,4,6\}$. Let R be the relation on A defined by
$\{(a, b): a, b \in \mathrm{~A}, b$ is exactly divisible by $a\}$.
(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R.
$\mathrm{A}=\{1,2,3,4,6\}, \mathrm{R}=\{(a, b): a, b \in \mathrm{~A}, b$ is exactly divisible by $a\}$
(i) $\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\}$
(ii) Domain of $\mathrm{R}=\{1,2,3,4,6\}$
(iii) Range of $\mathrm{R}=\{1,2,3,4,6\}$

Question 6:

Determine the domain and range of the relation R defined by $\mathrm{R}=\{(x, x+5): x \in\{0,1,2$, $3,4,5\}\}$.
$\mathrm{R}=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
$\therefore \mathrm{R}=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}$
\therefore Domain of $\mathrm{R}=\{0,1,2,3,4,5\}$
Range of $R=\{5,6,7,8,9,10\}$

Question 7:

Write the relation $\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$ in roster form.
$\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$
The prime numbers less than 10 are $2,3,5$, and 7 .
$\therefore \mathrm{R}=\{(2,8),(3,27),(5,125),(7,343)\}$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Question 8:

Let $\mathrm{A}=\{x, y, \mathrm{z}\}$ and $\mathrm{B}=\{1,2\}$. Find the number of relations from A to B .

It is given that $\mathrm{A}=\{x, y, \mathrm{z}\}$ and $\mathrm{B}=\{1,2\}$.
$\therefore \mathrm{A} \times \mathrm{B}=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$

Since $n(\mathrm{~A} \times \mathrm{B})=6$, the number of subsets of $\mathrm{A} \times \mathrm{B}$ is 2^{6}.

Therefore, the number of relations from A to B is 2^{6}.

Question 9:

Let R be the relation on \mathbf{Z} defined by $\mathrm{R}=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$. Find the domain and range of R .
$\mathrm{R}=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$

It is known that the difference between any two integers is always an integer.
\therefore Domain of $\mathrm{R}=\mathbf{Z}$

Range of $\mathrm{R}=\mathbf{Z}$

EXERCISE - 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:
(i) $f(x)=-|x|$ (ii) $f(x)=\sqrt{9-x^{2}}$
(i) $f(x)=-|x|, x \in \mathrm{R}$

We know that $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
$\therefore f(x)=-|x|=\left\{\begin{array}{l}-x, x \geq 0 \\ x, x<0\end{array}\right.$

Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of f is \mathbf{R}.

It can be observed that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.
\therefore The range of f is $(-\infty, 0]$.

EDUCATION CENTRE
 Where You Get Complete Knowledge

(ii) $f(x)=\sqrt{9-x^{2}}$

Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3 , the domain of $f(x)$ is $\{x:-3 \leq x \leq 3\}$ or $[-3,3]$.

For any value of x such that $-3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .
\therefore The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or $[0,3]$.

Question 3:

A function f is defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0)$, (ii) $f(7)$, (iii) $f(-3)$

The given function is $f(x)=2 x-5$.
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$

Question 4:

The function ' t ' which maps temperature in degree Celsius into temperature in degree

Find (i) $t(0)$ (ii) $t(28)$ (iii) $t(-10)$ (iv) The value of C , when $t(\mathrm{C})=212$
The given function is $t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32$.
Therefore,
(i) $t(0)=\frac{9 \times 0}{5}+32=0+32=32$
(ii) $t(28)=\frac{9 \times 28}{5}+32=\frac{252+160}{5}=\frac{412}{5}$
(iii)

$$
t(-10)=\frac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14
$$

(iv) It is given that $t(\mathrm{C})=212$

$$
\begin{aligned}
& \therefore 212=\frac{9 C}{5}+32 \\
& \Rightarrow \frac{9 C}{5}=212-32 \\
& \Rightarrow \frac{9 C}{5}=180 \\
& \Rightarrow 9 C=180 \times 5 \\
& \Rightarrow C=\frac{180 \times 5}{9}=100
\end{aligned}
$$

Thus, the value of t, when $t(\mathrm{C})=212$, is 100 .

Question 5:

Find the range of each of the following functions.
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$.
(ii) $f(x)=x^{2}+2, x$, is a real number.
(iii) $f(x)=x, x$ is a real number
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$

The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as
E. EDUCATION CENTRE

x	0.01	0.1	0.9	1	2	2.5	4	5	\ldots
$f(x)$	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	\ldots

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.
i.e., range of $f=(-\infty, 2)$

Alter:

Let $x>0$
$\Rightarrow 3 x>0$
$\Rightarrow 2-3 x<2$
$\Rightarrow f(x)<2$
\therefore Range of $f=(-\infty, 2)$
(ii) $f(x)=x^{2}+2, x$, is a real number

The values of $f(x)$ for various values of real numbers x can be written in the tabular form as

| x | 0 | ± 0.3 | ± 0.8 | ± 1 | ± 2 | ± 3 | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 2 | 2.09 | 2.64 | 3 | 6 | 11 | \ldots. |

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.
i.e., range of $f=[2, \infty)$

Alter:

Let x be any real number.

Accordingly,
$\Rightarrow x^{2}+2 \geq 0+2$
$\Rightarrow x^{2}+2 \geq 2$
$\Rightarrow f(x) \geq 2$
\therefore Range of $f=[2, \infty)$
(iii) $f(x)=x, x$ is a real number

It is clear that the range of f is the set of all real numbers.
\therefore Range of $f=\mathbf{R}$

