

EXERCISE -2.1

Question 1:

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y.

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$.

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore, $\frac{x}{3} + 1 = \frac{5}{3}$ and $y - \frac{2}{3} = \frac{1}{3}$.

$$\frac{x}{3} + 1 = \frac{5}{3}$$
$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1 \quad y - \frac{2}{3} = \frac{1}{3}$$
$$\Rightarrow \frac{x}{3} = \frac{2}{3} \qquad \Rightarrow y = \frac{1}{3} + \frac{2}{3}$$
$$\Rightarrow x = 2 \qquad \Rightarrow y = 1$$

$\therefore x = 2 \text{ and } y = 1$

Question 2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= (Number of elements in A) \times (Number of elements in B)

 $= 3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ is 9.

Question 3:

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

 $G = \{7, 8\}$ and $H = \{5, 4, 2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as

 $P \times Q = \{(p, q) \colon p \in P, q \in Q\}$

 $:: \mathbf{G} \times \mathbf{H} = \{(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)\}$

 $H \times G = \{(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)\}$

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.

(ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) If $A = \{1, 2\}, B = \{3, 4\}$, then $A \times (B \cap \Phi) = \Phi$.

(i) False

If $P = \{m, n\}$ and $Q = \{n, m\}$, then

 $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$

(ii) True

(iii) True

Question 5:

If $A = \{-1, 1\}$, find $A \times A \times A$.

It is known that for any non-empty set A, $A \times A \times A$ is defined as

 $A \times A \times A = \{(a, b, c): a, b, c \in A\}$

It is given that $A = \{-1, 1\}$

$$\therefore \mathbf{A} \times \mathbf{A} \times \mathbf{A} = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (-1, -1, -1), (-1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1, -1), (-1, -1), (-$$

(1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)

Question 6:

If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p,q): p \in P, q \in Q\}$

 \therefore A is the set of all first elements and B is the set of all second elements.

Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Question 7:

Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

(i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

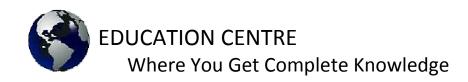
(ii) $A \times C$ is a subset of $B \times D$

(i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \Phi$

 $\therefore L.H.S. = A \times (B \cap C) = A \times \Phi = \Phi$

 $A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$



 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 $\therefore R.H.S. = (A \times B) \cap (A \times C) = \Phi$

 \therefore L.H.S. = R.H.S

Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify: $A \times C$ is a subset of $B \times D$

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 $B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$.

Therefore, $A \times C$ is a subset of $B \times D$.

Question 8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

 $A = \{1, 2\}$ and $B = \{3, 4\}$

 $\therefore \mathbf{A} \times \mathbf{B} = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

 $\Rightarrow n(A \times B) = 4$

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^{m}$.

Therefore, the set $A \times B$ has $2^4 = 16$ subsets. These are

 Φ , {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)},

 $\{(1, 3), (2, 4)\}, \{(1, 4), (2, 3)\}, \{(1, 4), (2, 4)\}, \{(2, 3), (2, 4)\},\$

 $\{(1, 3), (1, 4), (2, 3)\}, \{(1, 3), (1, 4), (2, 4)\}, \{(1, 3), (2, 3), (2, 4)\},\$

 $\{(1, 4), (2, 3), (2, 4)\}, \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in $A \times B$.

We know that A = Set of first elements of the ordered pair elements of $A \times B$

 $B = Set of second elements of the ordered pair elements of A \times B$.

 \therefore *x*, *y*, and *z* are the elements of A; and 1 and 2 are the elements of B.

Since n(A) = 3 and n(B) = 2, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10:

The Cartesian product $A \times A$ has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore n(\mathbf{A} \times \mathbf{A}) = n(\mathbf{A}) \times n(\mathbf{A})$$

It is given that $n(A \times A) = 9$

 $\therefore n(\mathbf{A}) \times n(\mathbf{A}) = 9$

$$\Rightarrow n(A) = 3$$

The ordered pairs (-1, 0) and (0, 1) are two of the nine elements of A \times A.

We know that $A \times A = \{(a, a): a \in A\}$. Therefore, -1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set $A \times A$ are (-1, -1), (-1, 1), (0, -1), (0, 0),

(1, -1), (1, 0), and (1, 1)

EXERCISE -2.2

Question 1:

Let A = {1, 2, 3, ..., 14}. Define a relation R from A to A by R = {(x, y): 3x - y = 0, where $x, y \in A$ }. Write down its domain, codomain and range.

The relation R from A to A is given as

 $R = \{(x, y): 3x - y = 0, where x, y \in A\}$

i.e., $R = \{(x, y): 3x = y, where x, y \in A\}$

 $\therefore \mathbf{R} = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

:. Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the codomain f the relation R.

::Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {3, 6, 9, 12}

Question 2:

Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a natural number less than 4}; x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

 $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in \mathbb{N}\}$

The natural numbers less than 4 are 1, 2, and 3.

 $\therefore \mathbf{R} = \{(1, 6), (2, 7), (3, 8)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

: Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {6, 7, 8}

Question 3:

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; $x \in A, y \in B$ }. Write R in roster form.

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$

R = {(x, y): the difference between x and y is odd; $x \in A, y \in B$ }

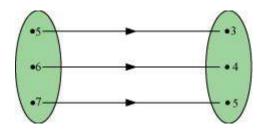
 $\therefore \mathbf{R} = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q. write this relation

(i) in set-builder form (ii) in roster form.

What is its domain and range?



According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

(i) $R = \{(x, y): y = x - 2; x \in P\}$ or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$

(ii)
$$R = \{(5, 3), (6, 4), (7, 5)\}$$

Domain of $R = \{5, 6, 7\}$

Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by

 $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}.$

(i) Write R in roster form

(ii) Find the domain of R

(iii) Find the range of R.

A = {1, 2, 3, 4, 6}, R = {(a, b): $a, b \in A, b$ is exactly divisible by a}

(i) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)\}$

- (ii) Domain of $R = \{1, 2, 3, 4, 6\}$
- (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$.

 $\mathbf{R} = \{(x, x+5): x \in \{0, 1, 2, 3, 4, 5\}\}$

 $\therefore \mathbf{R} = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

: Domain of $R = \{0, 1, 2, 3, 4, 5\}$

Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7:

Write the relation $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$ in roster form.

 $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

The prime numbers less than 10 are 2, 3, 5, and 7.

 $\therefore \mathbf{R} = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

 $\therefore \mathbf{A} \times \mathbf{B} = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$

Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 .

Therefore, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on Z defined by $R = \{(a, b): a, b \in \mathbb{Z}, a - b \text{ is an integer}\}$. Find the domain and range of R.

 $R = \{(a, b): a, b \in \mathbb{Z}, a - b \text{ is an integer}\}\$

It is known that the difference between any two integers is always an integer.

 \therefore Domain of R = Z

Range of R = Z

EXERCISE -2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) $\{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

(iii) {(1, 3), (1, 5), (2, 5)}

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}

(iii) {(1, 3), (1, 5), (2, 5)}

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$
 (ii) $f(x) = \sqrt{9 - x^2}$

(i)
$$f(x) = -|x|, x \in \mathbb{R}$$

We know that $|x| = \begin{cases} x, \ x \ge 0 \\ -x, \ x < 0 \end{cases}$

$$\therefore f(x) = -|x| = \begin{cases} -x, \ x \ge 0\\ x, \ x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is **R**.

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

: The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x : -3 \le x \le 3\}$ or [-3, 3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

$$\therefore \text{The range of } f(x) \text{ is } \{x: 0 \le x \le 3\} \text{ or } [0, 3].$$

Question 3:

A function *f* is defined by f(x) = 2x - 5. Write down the values of

(i) *f*(0), (ii) *f*(7), (iii) *f*(-3)

The given function is f(x) = 2x - 5.

Therefore,

(i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$

(ii) $f(7) = 2 \times 7 - 5 = 14 - 5 = 9$

$$(iii) f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$$

Question 4:

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$.

Find (i) t (0) (ii) t (28) (iii) t (-10) (iv) The value of C, when t(C) = 212

The given function is
$$t(C) = \frac{9C}{5} + 32$$

Therefore,

(i)
$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

(ii)
$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$

(iii)
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that t(C) = 212

$$\therefore 212 = \frac{9C}{5} + 32$$
$$\Rightarrow \frac{9C}{5} = 212 - 32$$
$$\Rightarrow \frac{9C}{5} = 180$$
$$\Rightarrow 9C = 180 \times 5$$
$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of *t*, when t(C) = 212, is 100.

Question 5:

Find the range of each of the following functions.

(i)
$$f(x) = 2 - 3x, x \in \mathbf{R}, x > 0.$$

- (ii) $f(x) = x^2 + 2$, x, is a real number.
- (iii) f(x) = x, x is a real number

(i)
$$f(x) = 2 - 3x, x \in \mathbf{R}, x > 0$$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

EDUCATION CENTRE

x	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.

i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0

- $\Rightarrow 3x > 0$
- $\Rightarrow 2 3x < 2$
- $\Rightarrow f(x) < 2$
- \therefore Range of $f = (-\infty, 2)$
- (ii) $f(x) = x^2 + 2$, x, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

x	0	±0.3	±0.8	±1	±2	±3	
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.

i.e., range of $f = [2, \infty)$

Alter:

Let *x* be any real number.

Accordingly,

 $x^2 \ge 0$

- $\Rightarrow x^2 + 2 \ge 0 + 2$
- $\Rightarrow x^2 + 2 \ge 2$
- $\Rightarrow f(x) \ge 2$
- \therefore Range of $f = [2, \infty)$
- (iii) f(x) = x, x is a real number

It is clear that the range of f is the set of all real numbers.

 \therefore Range of $f = \mathbf{R}$