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Question 1: 

If , find the values of x and y. 

It is given that . 

Since the ordered pairs are equal, the corresponding elements will also be equal. 

Therefore,  and . 

 

∴ x = 2 and y = 1 

Question 2: 

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in 

(A × B)? 

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5. 

⇒ Number of elements in set B = 3 

Number of elements in (A × B) 

= (Number of elements in A) × (Number of elements in B) 

= 3 × 3 = 9 

EXERCISE -2.1 
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Thus, the number of elements in (A × B) is 9. 

Question 3: 

If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G. 

G = {7, 8} and H = {5, 4, 2} 

We know that the Cartesian product P × Q of two non-empty sets P and Q is defined as 

P × Q = {(p, q): p∈ P, q ∈ Q} 

∴G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)} 

H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)} 

Question 4: 

State whether each of the following statement are true or false. If the statement is false, 

rewrite the given statement correctly. 

(i) If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}. 

(ii) If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) 

such that x∈ A and y ∈ B. 

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ. 

 (i) False 

If P = {m, n} and Q = {n, m}, then 

P × Q = {(m, m), (m, n), (n, m), (n, n)} 

(ii) True 

(iii) True 

Question 5: 
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If A = {–1, 1}, find A × A × A. 

It is known that for any non-empty set A, A × A × A is defined as 

A × A × A = {(a, b, c): a, b, c ∈ A} 

It is given that A = {–1, 1} 

∴ A × A × A = {(–1, –1, –1), (–1, –1, 1), (–1, 1, –1), (–1, 1, 1), 

(1, –1, –1), (1, –1, 1), (1, 1, –1), (1, 1, 1)} 

Question 6: 

If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B. 

It is given that A × B = {(a, x), (a, y), (b, x), (b, y)} 

We know that the Cartesian product of two non-empty sets P and Q is defined as P × Q = 

{(p,q): p ∈ P, q ∈ Q} 

∴ A is the set of all first elements and B is the set of all second elements. 

Thus, A = {a, b} and B = {x, y} 

Question 7: 

Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that 

(i) A × (B ∩ C) = (A × B) ∩ (A × C) 

(ii) A × C is a subset of B × D 

 (i) To verify: A × (B ∩ C) = (A × B) ∩ (A × C) 

We have B ∩ C = {1, 2, 3, 4} ∩ {5, 6} = Φ 

∴L.H.S. = A × (B ∩ C) = A × Φ = Φ 

A × B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)} 
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A × C = {(1, 5), (1, 6), (2, 5), (2, 6)} 

∴ R.H.S. = (A × B) ∩ (A × C) = Φ 

∴L.H.S. = R.H.S 

Hence, A × (B ∩ C) = (A × B) ∩ (A × C) 

(ii) To verify: A × C is a subset of B × D 

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)} 

B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), 

(4, 5), (4, 6), (4, 7), (4, 8)} 

We can observe that all the elements of set A × C are the elements of set B × D. 

Therefore, A × C is a subset of B × D. 

Question 8: 

Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List 

them. 

A = {1, 2} and B = {3, 4} 

∴A × B = {(1, 3), (1, 4), (2, 3), (2, 4)} 

⇒ n(A × B) = 4 

We know that if C is a set with n(C) = m, then n[P(C)] = 2m. 

Therefore, the set A × B has 24 = 16 subsets. These are 

Φ, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)}, 

{(1, 3), (2, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)}, {(2, 3), (2, 4)}, 

{(1, 3), (1, 4), (2, 3)}, {(1, 3), (1, 4), (2, 4)}, {(1, 3), (2, 3), (2, 4)}, 
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{(1, 4), (2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3), (2, 4)} 

Question 9: 

Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × 

B, find A and B, where x, y and z are distinct elements. 

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A × B. 

We know that A = Set of first elements of the ordered pair elements of A × B 

B = Set of second elements of the ordered pair elements of A × B. 

∴ x, y, and z are the elements of A; and 1 and 2 are the elements of B. 

Since n(A) = 3 and n(B) = 2, it is clear that A = {x, y, z} and B = {1, 2}. 

Question 10: 

The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). 

Find the set A and the remaining elements of A × A. 

We know that if n(A) = p and n(B) = q, then n(A × B) = pq. 

∴ n(A × A) = n(A) × n(A) 

It is given that n(A × A) = 9 

∴ n(A) × n(A) = 9 

⇒ n(A) = 3 

The ordered pairs (–1, 0) and (0, 1) are two of the nine elements of A × A. 

We know that A × A = {(a, a): a ∈ A}. Therefore, –1, 0, and 1 are elements of A. 

Since n(A) = 3, it is clear that A = {–1, 0, 1}. 

The remaining elements of set A × A are (–1, –1), (–1, 1), (0, –1), (0, 0), 
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(1, –1), (1, 0), and (1, 1) 

                 

Question 1: 

Let A = {1, 2, 3, … , 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, 

where x, y ∈A}. Write down its domain, codomain and range. 

The relation R from A to A is given as 

R = {(x, y): 3x – y = 0, where x, y ∈ A} 

i.e., R = {(x, y): 3x = y, where x, y ∈ A} 

∴R = {(1, 3), (2, 6), (3, 9), (4, 12)} 

The domain of R is the set of all first elements of the ordered pairs in the relation. 

∴Domain of R = {1, 2, 3, 4} 

The whole set A is the codomainof the relation R. 

∴Codomain of R = A = {1, 2, 3, …, 14} 

The range of R is the set of all second elements of the ordered pairs in the relation. 

∴Range of R = {3, 6, 9, 12} 

Question 2: 

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural 

number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the 

domain and the range. 

R = {(x, y): y = x + 5, x is a natural number less than 4, x, y ∈ N} 

The natural numbers less than 4 are 1, 2, and 3. 

∴R = {(1, 6), (2, 7), (3, 8)} 

EXERCISE -2.2 
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The domain of R is the set of all first elements of the ordered pairs in the relation. 

∴ Domain of R = {1, 2, 3} 

The range of R is the set of all second elements of the ordered pairs in the relation. 

∴ Range of R = {6, 7, 8} 

Question 3: 

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the 

difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form. 

A = {1, 2, 3, 5} and B = {4, 6, 9} 

R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B} 

∴R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)} 

Question 4: 

The given figure shows a relationship between the sets P and Q. write this relation 

(i) in set-builder form (ii) in roster form. 

What is its domain and range? 

 

According to the given figure, P = {5, 6, 7}, Q = {3, 4, 5} 

(i) R = {(x, y): y = x – 2; x ∈ P} or R = {(x, y): y = x – 2 for x = 5, 6, 7} 

(ii) R = {(5, 3), (6, 4), (7, 5)} 

Domain of R = {5, 6, 7} 

Range of R = {3, 4, 5} 
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Question 5: 

Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by 

{(a, b): a, b ∈ A, b is exactly divisible by a}. 

(i) Write R in roster form 

(ii) Find the domain of R 

(iii) Find the range of R. 

A = {1, 2, 3, 4, 6}, R = {(a, b): a, b ∈ A, b is exactly divisible by a} 

(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)} 

(ii) Domain of R = {1, 2, 3, 4, 6} 

(iii) Range of R = {1, 2, 3, 4, 6} 

Question 6: 

Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 

3, 4, 5}}. 

R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}} 

∴ R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)} 

∴Domain of R = {0, 1, 2, 3, 4, 5} 

Range of R = {5, 6, 7, 8, 9, 10} 

Question 7: 

Write the relation R = {(x, x3): x is a prime number less than 10} in roster form. 

R = {(x, x3): x is a prime number less than 10} 

The prime numbers less than 10 are 2, 3, 5, and 7. 

∴R = {(2, 8), (3, 27), (5, 125), (7, 343)} 
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Question 8: 

Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B. 

It is given that A = {x, y, z} and B = {1, 2}. 

∴ A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} 

Since n(A × B) = 6, the number of subsets of A × B is 26. 

Therefore, the number of relations from A to B is 26. 

Question 9: 

Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the 

domain and range of R. 

R = {(a, b): a, b ∈ Z, a – b is an integer} 

It is known that the difference between any two integers is always an integer. 

∴Domain of R = Z 

Range of R = Z 

               

Question 1: 

Which of the following relations are functions? Give reasons. If it is a function, 

determine its domain and range. 

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)} 

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)} 

(iii) {(1, 3), (1, 5), (2, 5)} 

 (i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)} 

 

EXERCISE -2.3 
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Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having 

their unique images, this relation is a function. 

Here, domain = {2, 5, 8, 11, 14, 17} and range = {1} 

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)} 

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation 

having their unique images, this relation is a function. 

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7} 

(iii) {(1, 3), (1, 5), (2, 5)} 

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this 

relation is not a function. 

Question 2: 

Find the domain and range of the following real function: 

(i) f(x) = –|x| (ii)  

 (i) f(x) = –|x|, x ∈ R 

We know that |x| =  

 

Since f(x) is defined for x ∈ R, the domain of f is R. 

It can be observed that the range of f(x) = –|x| is all real numbers except positive real 

numbers. 

∴The range of f is (– , 0]. 
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(ii)  

Since is defined for all real numbers that are greater than or equal to –3 and less 

than or equal to 3, the domain of f(x) is {x : –3 ≤ x ≤ 3} or [–3, 3]. 

For any value of x such that –3 ≤ x ≤ 3, the value of f(x) will lie between 0 and 3. 

∴The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3]. 

Question 3: 

A function f is defined by f(x) = 2x – 5. Write down the values of 

(i) f(0), (ii) f(7), (iii) f(–3) 

The given function is f(x) = 2x – 5. 

Therefore, 

(i) f(0) = 2 × 0 – 5 = 0 – 5 = –5 

(ii) f(7) = 2 × 7 – 5 = 14 – 5 = 9 

(iii) f(–3) = 2 × (–3) – 5 = – 6 – 5 = –11 

Question 4: 

The function ‘t’ which maps temperature in degree Celsius into temperature in degree 

Fahrenheit is defined by . 

Find (i) t (0) (ii) t (28) (iii) t (–10) (iv) The value of C, when t(C) = 212 

The given function is . 

Therefore, 
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(i)  

(ii)  

(iii)  

(iv) It is given that t(C) = 212 

 

Thus, the value of t, when t(C) = 212, is 100. 

Question 5: 

Find the range of each of the following functions. 

(i) f(x) = 2 – 3x, x ∈ R, x > 0. 

(ii) f(x) = x2 + 2, x, is a real number. 

(iii) f(x) = x, x is a real number 

 (i) f(x) = 2 – 3x, x ∈ R, x > 0 

The values of f(x) for various values of real numbers x > 0 can be written in the tabular 

form as 
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x 0.01 0.1 0.9 1 2 2.5 4 5 … 

f(x) 1.97 1.7 –0.7 –1 –4 –5.5 –10 –13 … 

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 

2. 

i.e., range of f = (– , 2) 

Alter: 

Let x > 0 

⇒ 3x > 0 

⇒ 2 –3x < 2 

⇒ f(x) < 2 

∴Range of f = (– , 2) 

(ii) f(x) = x2 + 2, x, is a real number 

The values of f(x) for various values of real numbers x can be written in the tabular form 

as 

x 0 ±0.3 ±0.8 ±1 ±2 ±3  … 

f(x) 2 2.09 2.64 3 6 11  ….. 

Thus, it can be clearly observed that the range of f is the set of all real numbers greater 

than 2. 

i.e., range of f = [2, ) 

Alter: 

Let x be any real number. 

Accordingly, 
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x2 ≥ 0 

⇒ x2 + 2 ≥ 0 + 2 

⇒ x2 + 2 ≥ 2 

⇒ f(x) ≥ 2 

∴ Range of f = [2, ) 

(iii) f(x) = x, x is a real number 

It is clear that the range of f is the set of all real numbers. 

∴ Range of f = R 

  

  

  

  

  

  

  

  

  

  

  

  

 


